Abstract

Numerical weather prediction (NWP) systems are crucial tools in atmospheric science education and weather forecasting, and high-performance computing (HPC) is essential for achieving such science. The goals of NWP systems are to simulate different scales of weather systems for educational purposes or to provide future weather information for operational purposes. Supercomputers have traditionally been used for NWP systems; however, supercomputers are expensive, have high power consumption, and are difficult to maintain and operate. In this study, the Raspberry Pi platform was used to develop an easily maintained high-performance NWP system with low cost and power consumption—the Improved Raspberry Pi WRF (IRPW). With 316 cores, the IRPW had a power consumption of 466 W and a performance of 200 Gflops at full load. IRPW successfully simulated a 48-h forecast with a resolution of 1 km and a domain of 32,000 km2 in 1.6 h. Thus, IRPW could be used in atmospheric science education or for local weather forecasting applications. Moreover, due to its small volume and low power consumption, it could be mounted to a portable weather observation system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.