Abstract

ABSTRACTThis paper is concerned with evaluating techniques to forecast plausible future scenarios in wind power production for up to 48 h ahead, where the term scenario refers to a coherent chronological prediction including the timing, rapidity and size of large changes. Such predictions are of great interest in power systems with high regional wind penetration where a large rapid change in wind power may pose a threat to power system security. Numerous studies have evaluated wind power forecasting methods on ex post statistical measures of forecast accuracy such as root mean square error. Other work has assessed the forecast value by simulating automated decision making for bidding wind generation into particular electricity markets, and in some cases, the ex ante value of a perfect forecast has been assessed. The future, however, will always be uncertain, and decision making always takes place in an ex ante context. This paper discusses how numerical weather prediction (NWP) systems forecasts are produced, with a particular focus on uncertainty and how forecasters might visually present plausible future scenarios for wind power to electricity industry decision makers. It is difficult to quantify the ex ante value of visual wind power forecast information to the complex decision‐making process involved. Consequently, this paper explores qualitative assessments of ex ante value by proposing six desirable attributes for the techniques and the presentation of NWP forecasts to decision makers. It uses these attributes to assess four such methodologies, which include NWP ensemble methods and the recently introduced NWP spatial field approach. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call