Abstract

Abstract We developed a laser frequency stabilization and an optical fiber transmission system for the the francium electric dipole moment search. The absolute accuracy of a laser frequency stabilization scheme using a state-of-the-art commercial wavelength meter was 0.48 MHz at ±2 nm and -1.33 MHz at ±200 nm from calibration wavelength, respectively, and the frequency instability is below 10-9 with a standard deviation of 0.56 MHz over 60 hours. We also demonstrated that a 400 m long fiber laid between laboratories can transmit 30 mW of trapping laser light, which is sufficient for a magneto-optical trapping of francium. The polarization crosstalk in the fiber was stable at -25 dB over 12 hours of measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.