Abstract

The frequency stability of free-running semiconductor lasers is influenced by several factors, such as driving current and external operating environment. The frequency stabilization of laser has become an international research hotspot in recent years. This paper reviews active frequency stabilization technologies of laser diodes and elaborates their principles. Based on differences of frequency discrimination curves, these active frequency stabilization technologies are classified into three major types, which are harmonic frequency stabilization, Pound-Drever-Hall (PDH) technology and curve subtraction frequency stabilization. Further, merits and demerits of each technology are compared from aspects of frequency stability and structure complexity. Finally, prospects of frequency stabilization technologies of semiconductor lasers are discussed in detail. Combining several of these methods are future trends, especially the combination of frequency stabilization of F–P cavity. And PID electronic control for optimizing the servo system is generally added in the methods mentioned above.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call