Abstract

Hydroponic growing systems are advantageous for nutrient studies in which root data are important because they alleviate the laborious and time-consuming task of washing roots to remove soilless substrate particulates from them. However, the growing system should be optimized for the crop of interest. Our overall objective was to develop a protocol for hydroponic strawberry (Fragaria ×ananassa) production that provided growth equal to or better than soilless substrate. Plants were initially grown in perlite, sand, deep water culture (DWC), or a peat-based soilless substrate. Aboveground plant growth in DWC was similar to that of plants grown in the peat-based substrate and required minimal effort to harvest the entire root system. However, the pH of the DWC nutrient solution decreased to 4.0 ± 0.1 (mean ± SE) when plants were provided a modified strawberry (Yamazaki) nutrient solution with a ratio of nitrate (NO3−) to ammonium (NH4+) of 80:20. As a result, a subsequent trial was conducted to evaluate the buffering capacity of nutrient solutions with NO3− to NH4+ ratios of 0:100, 20:80, 50:50, 60:40, 80:20, or 100:0, with the addition of potassium bicarbonate (KHCO3). Up to 2.6 mM KHCO3 did not provide adequate buffering in nutrient solutions containing NH4+ (0:100 to 80:20 treatments), and nutrient solution pH decreased by ∼1.5 units every 2 to 3 days. The 100% NO3− nutrient solution, however, maintained a stable pH of 5.9 ± 0.1 when buffered with 0.8 mM KHCO3. Finally, 2(N-Morpholino)ethanesulfonic acid (MES) was evaluated as a potential buffering agent for DWC strawberry production. Plants were grown in a nutrient solution with a 60:40 ratio of NO3−:NH4+. The buffering capacity of the nutrient solution increased as the MES concentration supplied increased from 1 to 5 mM, and the 5 mM MES treatment maintained a pH of 5.6 ± 0.2. In summary, strawberry plants can successfully be grown hydroponically in DWC, provided that nutrient solution pH is adequately managed. The addition of MES buffer provided better pH stability than KHCO3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call