Abstract

AbstractThis paper aims to develop an integrated model of predicting business failure, using business financial and non-financial factors to diagnose the status of business, thereby providing useful references for business operation. This study applied Rough Set Theory to extract key financial and non-financial factors and Grey Relational Analysis (GRA) as the approach of assigning weights. In addition, Case-Based Reasoning (CBR) are adopted to propose a new hybrid models entitled RG-CBR (combining RST and CBR with GRA) to compare the accuracy rates in predicting failure. After exploring the TEJ (Taiwan Economic Journal) database and conducting various experiments with CBR, RST-CBR and RG-CBR the study finds CBR, RST-CBR and RG-CBR reporting an accuracy rate in predicting business failure of 49.2%, 59.8% and 83.3%respectively. The RG-CBR boasts the highest accuracy rate while also effectively reducing Type I and Type II error rates.Keywordsdecision analysisdata miningbusiness failure predictionrough set theorycase-based reasoning

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.