Abstract
Predicting business failure is an important and challenging issue that has served as an impetus for many academic studies over the past three decades. This study aims at developing CBR-based hybrid models of predicting business failure. The need to supplement CBR (Case-Based Reasoning) with other classification and diagnosis techniques is triggered by the fact that accuracy and effectiveness tend to get reduced when CBR alone is applied to handle too many attributes. To enhance the accuracy of bankruptcy prediction, the hybrid models developed by this study include: RST–CBR (combining Rough Set Theory with CBR), RST–GRA–CBR (integrating RST, Grey Relational Analysis, and CBR), and CART–CBR (combining Classification and Regression Tree with CBR). In order to verify the ability of the proposed models to achieve optimal accuracy rate, this study further compares the predictive ability of CBR with those of other comparative models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.