Abstract
Since the energy crisis and the environmental issue have been focused due to excessive fossil fuel consumption, the wind power has been considered as an important renewable energy source. Recently, several MW class large scale wind turbine systems have been developed in some countries. Even though the large scale wind turbine can effectively produce the electrical power, the small scale wind turbines have been continuously developed due some advantages, for instance, it can be easily built by low cost without any limitation of location, i.e. even in city. In case of small scale wind turbines, the vertical axis wind turbine (VAWT) is used in city having frequent wind direction change, even though it has a bit lower efficient than the horizontal axis wind turbine. Furthermore, most small scale wind turbine systems have been designed at the rated wind speed of around 12m/s. This work is to design a high efficiency 500W class composite VAWT blade which is applicable to relatively low speed region. In the aerodynamic design of blade, the parametric studies are carried out to decide an optimal aerodynamic configuration. The aerodynamic efficiency and performance of the designed VAWT is confirmed by the CFD analysis. The structural design is performed by the load case study, the initial sizing using the netting rule and the rule of mixture, the structural analysis using FEM, the fatigue life estimation and the structural test. The prototype blade is manufactured by the hand lay-up and the matched die molding. The experimental structural test results are compared with the FEM analysis results. Finally, to evaluate the prototype VAWT including designed blades, the performance test is performed using a truck to simulate the various range wind speeds and some measuring equipments. According to the performance evaluation result, the estimated performance is well agreed with the experimental test result in all operating ranges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.