Abstract

Since radionuclides have unique characteristic gamma-ray spectra, usually maintained as a set of (energy, counts/energy) ordered pairs, an explicit functional representation would be indisputably useful. In this paper, the Gamma Detector Response and Analysis Software has been used to simulate the gamma-ray spectra as it would be collected by an NaI detector for a set of 70 radionuclides. Gaussian radial basis function (RBF) networks that offer simple, closed-form expressions are then trained to represent each of these spectra. Hence, a library consisting of 70 RBF networks for the corresponding radionuclides has been built. The presence of these library-contained radionuclides in a given gamma-ray spectrum of an unknown source is identified by an algorithm that employs a linear combination of the library spectra to approximate the unknown spectrum. The combination coefficients are then determined by minimizing the squared deviation error function under convexity constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call