Abstract

A novel dual-signal fluorescent sensor was developed for detecting organophosphorus pesticides (OPs). It relies on the catalytic activities of acetylcholinesterase (AChE) and choline oxidase (ChOx) to generate hydrogen peroxide (H2O2) through the conversion of acetylcholine (ACh) to choline·H2O2 then oxidizes ferrocene-modified tetraphenylethylene (TPE-Fc) to its oxidized state (TPE-Fc+), resulting in enhanced cyan fluorescence due to aggregation. Simultaneously, ferrocene oxidation generates hydroxyl radicals (•OH), causing a decrease in orange fluorescence of glutathione-synthesized gold nanoclusters (GSH-AuNCs). The presence of OPs restricts AChE activity, reducing H2O2 production. Increasing OPs concentration leads to decreased cyan fluorescence and increased orange fluorescence, enabling visual OPs detection. The sensor has a linear dynamic range of 10–2000 ng/mL with a detection limit of 2.05 ng/mL. Smartphone-based color identification and a WeChat mini program were utilized for rapid OPs analysis with successful outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call