Abstract

A ground-based system for measuring tropospheric OH radical based on laser-induced fluorescence (AIOFM-LIF) was developed in this work. In this system, ambient air is expanded through a 0.4 mm nozzle to low pressure in a detection chamber, where OH radical is irradiated by the 308 nm laser pulse at a repetition rate of 8.5 kHz. Then, the resultant fluorescence corresponding to the A2Σ+(υ'=0)←X2Πi(ν''=0) transition at 308 nm is detected using gated photon counting. The AIOFM-LIF system was integrated into a mobile observing platform for the field observation following the series of laboratory characterization. A portable standard OH radical source by water photolysis-ozone actinometry was established and optimized for accurate system calibration. The factors affecting the system sensitivity were quantified. It was shown that the ultimate system sensitivity is 9.9 × 10-8 cps (molecules cm-3)-1 mw-1; the minimum detection limits are (1.84 ± 0.26) × 105 cm-3 and (3.69 ± 0.52) × 105 cm-3 at night and noon, respectively; and the whole error of AIOFM-LIF system is about 16%. Then, the system was deployed in Shenzhen, China, during the "A comprehensive STudy of the Ozone foRmation Mechanism in Shenzhen" (STORM) campaign. Valid OH radical concentrations for 31 days were obtained, and the peak of the daily average concentration was 6.6 × 106 cm-3 around 12:00. And a high correlation (R2 = 0.77) between OH and j(O1D) was also observed in this field campaign. The relationship between OH concentration and NOx was attentively discussed. The deployment of AIOFM-LIF system in STORM campaign has demonstrated its capability of measuring tropospheric OH radical with high sensitivity and accuracy in a polluted environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.