Abstract

High-speed machining centers are used for end-milling operations of a variety of parts, dies, and molds needed in power and transport industries. Different approaches are used for rough and finish end-milling, since desired productivity and quality are important in the respective cases. In the present work, a feed rate adaption control system is proposed by integrating different requirements of high-speed end-milling. Hardened EN 24 steel which is being widely used in the production of dies, molds, and other parts is taken as a candidate work material for implementation of the proposed control system. Based on extensive experimentation, investigations have been carried out on high-speed rough and finish end-milling operations, and the details are reported by the authors (Saikumar and Shunmugam, Int J Adv Manuf Technol, under review). In this paper, relevant response surface and artificial neural network models have been used, and suitable reference parameters are obtained for the proposed control system. In the case of rough end-milling, material removal volume is taken as the objective, and the reference values for cutting force and cutting time are used. Only a reference cutting force is used for finish end-milling in which surface roughness is considered as the objective. Implementation details of the proposed PC-based control system are presented. The results obtained for a newly devised H–A–S–H test (short run) along with those for long-run tests are presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.