Abstract
In this study, a milling system based on the in-line surface roughness measurement during machining process is developed using Artificial Neural Network (ANN) technique. In the proposed system, optimum feed rate and cutting speed are determined by ANN so as to provide the desired surface roughness, which is an important criterion for high quality surface. For this purpose, firstly an algorithm determining the operating principle of the system is developed. According to this algorithm, the optimum cutting parameters are predicted for end milling (finishing) operation by measuring semi-finish machining surface roughness via an optical sensor and then end milling operation is performed with the cutting parameters determined by the system. In the experimental part of this study, surface quality is observed for the milling process before and after the intervention of the system and the results is compared. The experimental results show that the system can be integrated with the modern machining systems in order to obtain the desired surface quality levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Precision Engineering and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.