Abstract

Uncontrolled, intensive extraction of water from mineral water deposits can lead to negative consequences, the penetration of sewage beyond the water-resistant layers, the destruction of the structure of aquifers and the further loss of the mineral water source. This paper deals with the issues of control of hydrodynamic processes under random impacts in the aquifers of mineral water deposits using mathematical models. The analysis of the technological process of mineral water extraction and statistical analysis of retrospective monitoring data of the deposit were carried out in order to confirm the hypothesis of the stationarity of the processes under consideration. A mathematical model of hydrogeological processes occurring under random disturbances has been constructed. The influence of such disturbances is expressed in deviations of the head in the aquifer from the desired value. Controlling consists of maintaining the head of aquifers at a given level in order to preserve the hydro-mineral base of the region. Lumped and distributed controllers are proposed as corrective blocks, the parameters of which are calculated by frequency methods of controller synthesis. The use of a closed loop control system minimizes the influence of random effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call