Abstract

A dispersive liquid–liquid microextraction (DLLME) method coupled to high-performance liquid chromatography was developed for the analysis of α-tocopherol in grain samples. The DLLME parameters including the type and volume of extractants, the volume of disperser and the addition of salt were examined. The optimized DLLME procedure consisted in the formation of a cloudy solution promoted by the fast addition to the sample (5 mL of saponified sample solution diluted with 5 mL of water) of a mixture of carbon tetrachloride (extraction solvent, 80 μL) and ethanol (dispersive solvent, 200 μL) without the addition of salt, followed by shaking for 5 min and centrifuging for 3 min at 5,000 rpm. Intra- and inter-day repeatability expressed as % RSD were 3.5 and 7.6 %, respectively. The limit of detection and the limit of quantification were 1.9 and 6.3 μg L−1. The comparison of this method with the national standardized extraction method, supercritical carbon dioxide extraction, accelerated solvent extraction, and conventional heat-reflux extraction indicates that the DLLME was accurate (no significant differences at the 0.05 % probability level), high efficient, low organic solvent-consuming, and low cost. This procedure was successfully applied to 42 samples of 14 types of purple wheat, for which the content of α-tocopherol exhibited a significantly negative correlation with the pigment content measured by a spectrophotometer. The recovery rates ranged from 90.5 to 103.7 %.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call