Abstract

The vibrations induced by the soil irregularities and other equivalent disturbances on agricultural tractors represent a major cause of disease for tractor drivers. The reduction of vibration exposure of operators is a topic of interest for the (Italian) National Institute for Insurance against Accidents at Work (INAIL). Several passive, semi-active, and active solutions are commercially available for the seat or the cabin suspension to isolate the driver from the vibrations. A prototype of a hydraulic active suspension system for the operator seat has been developed in the laboratories of INAIL. In this paper, nonlinear multi-physics modeling of the prototype has been carried after an experimental identification of the actuation system and specifically of the control valve parameters. The model is adjusted to retrace the system’s response and is used as a digital twin of the physical prototype to develop and optimize the control system. An equivalent simplified model is obtained to design a proper control strategy for the active suspension system. Finally, the controller is tested on the digital twin of the system to assess its performance in isolating vibrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call