Abstract

A low-power ultrahigh-frequency-driven inductively coupled microplasma (ICMP) source equipped with dielectric-barrier discharge (DBD) was developed to realize a low-temperature and high-density plasma in fine quartz capillaries with inner diameters of less than 1.0 mm. A stable plasma was generated and its sustainability was independent of the gas flow rate. This plasma jet had a longer plume than that of a thermoelectron-enhanced microplasma jet, and time-resolved characterization suggested interactions between ICMP and DBD jets. By optical emission spectroscopy characterization, the gas temperature and electron density inside a capillary were estimated to be 400–1000 K and 1013–1014 cm−3, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.