Abstract
Interatomic potentials based on neural-network machine learning (ML) approach to address the long-standing challenge of accuracy versus efficiency in molecular-dynamics simulations have recently attracted a great deal of interest. Here, utilizing Pd-Si system as a prototype, we extend the development of neural-network ML potentials to compounds exhibiting various types of bonding characteristics. The ML potential is trained by fitting to the energies and forces of both liquid and crystal structures first-principles calculations based on density-functional theory (DFT). We show that the generated ML potential captures the structural features and motifs in $\mathrm{P}{\mathrm{d}}_{82}\mathrm{S}{\mathrm{i}}_{18}$ and $\mathrm{P}{\mathrm{d}}_{75}\mathrm{S}{\mathrm{i}}_{25}$ liquids more accurately than the existing interatomic potential based on embedded-atom method (EAM). The ML potential also describes the solid-liquid interface of these systems very well. Moreover, while the existing EAM potential fails to describe the relative energies of various crystalline structures and predict wrong ground-state structures at $\mathrm{P}{\mathrm{d}}_{3}\mathrm{Si}$ and $\mathrm{P}{\mathrm{d}}_{9}\mathrm{S}{\mathrm{i}}_{2}$ composition, the developed ML potential predicts correctly the ground-state structures from genetic algorithm search. The efficient ML potential with DFT accuracy from our study will provide a promising scheme for accurate atomistic simulations of structures and dynamics of complex Pd-Si system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.