Abstract
Accurate identification of lymph node metastasis preoperatively and noninvasively in patients with cervical cancer can avoid unnecessary surgical intervention and benefit treatment planning. To develop a deep learning model using preoperative magnetic resonance imaging for prediction of lymph node metastasis in cervical cancer. This diagnostic study developed an end-to-end deep learning model to identify lymph node metastasis in cervical cancer using magnetic resonance imaging (MRI). A total of 894 patients with stage IB to IIB cervical cancer who underwent radical hysterectomy and pelvic lymphadenectomy were reviewed. All patients underwent radical hysterectomy and pelvic lymphadenectomy, received pelvic MRI within 2 weeks before the operations, had no concurrent cancers, and received no preoperative treatment. To achieve the optimal model, the diagnostic value of 3 MRI sequences was compared, and the outcomes in the intratumoral and peritumoral regions were explored. To mine tumor information from both image and clinicopathologic levels, a hybrid model was built and its prognostic value was assessed by Kaplan-Meier analysis. The deep learning model and hybrid model were developed on a primary cohort consisting of 338 patients (218 patients from Sun Yat-sen University Cancer Center, Guangzhou, China, between January 2011 and December 2017 and 120 patients from Henan Provincial People's Hospital, Zhengzhou, China, between December 2016 and June 2018). The models then were evaluated on an independent validation cohort consisting of 141 patients from Yunnan Cancer Hospital, Kunming, China, between January 2011 and December 2017. The primary diagnostic outcome was lymph node metastasis status, with the pathologic characteristics diagnosed by lymphadenectomy. The secondary primary clinical outcome was survival. The primary diagnostic outcome was assessed by receiver operating characteristic (area under the curve [AUC]) analysis; the primary clinical outcome was assessed by Kaplan-Meier survival analysis. A total of 479 patients (mean [SD] age, 49.1 [9.7] years) fulfilled the eligibility criteria and were enrolled in the primary (n = 338) and validation (n = 141) cohorts. A total of 71 patients (21.0%) in the primary cohort and 32 patients (22.7%) in the validation cohort had lymph node metastais confirmed by lymphadenectomy. Among the 3 image sequences, the deep learning model that used both intratumoral and peritumoral regions on contrast-enhanced T1-weighted imaging showed the best performance (AUC, 0.844; 95% CI, 0.780-0.907). These results were further improved in a hybrid model that combined tumor image information mined by deep learning model and MRI-reported lymph node status (AUC, 0.933; 95% CI, 0.887-0.979). Moreover, the hybrid model was significantly associated with disease-free survival from cervical cancer (hazard ratio, 4.59; 95% CI, 2.04-10.31; P < .001). The findings of this study suggest that deep learning can be used as a preoperative noninvasive tool to diagnose lymph node metastasis in cervical cancer.
Highlights
Cervical cancer is one of the most common cancers among women.[1]
Among the 3 image sequences, the deep learning model that used both intratumoral and peritumoral regions on contrast-enhanced T1-weighted imaging showed the best performance (AUC, 0.844; 95% CI, 0.780-0.907)
These results were further improved in a hybrid model that combined tumor image information mined by deep learning model and magnetic resonance imaging (MRI)-reported lymph node status (AUC, 0.933; 95% CI, 0.887-0.979)
Summary
Cervical cancer is one of the most common cancers among women.[1] The treatment and management of cervical cancer are often guided by the International Federation of Gynaecology and Obstetrics (FIGO) staging system, which is based on clinical assessment and imaging rather than invasive investigations, such as surgery.[2] In the 2018 FIGO staging system, once lymph node (LN) metastasis (LNM) is identified either by imaging or pathologic testing, cancer will be considered as stage IIIC irrespective of other findings.[3] LNM has been reported to be associated with prognosis and treatment planning in cervical cancer.[4,5] patients who show evidence of LNM may undergo chemoradiotherapy rather than surgery as their first choice,[6] avoiding surgery followed by adjuvant chemoradiotherapy and possible serious complications thenceforth.[7,8] accurate identification of LN status preoperatively in patients with cervical cancer might avoid unnecessary surgical intervention and benefit treatment planning
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have