Abstract
Due to the widespread use of pesticides and their harmful effects on humans and wildlife, monitoring their residual amounts in crops is critically essential but still challenging regarding the development of high-throughput approaches. Herein, a colorimetric sensor array has been proposed for discrimination and identification of triazole fungicides using monometallic and bimetallic silver and gold nanoparticles. Aggregation-induced behavior of AgNPs, AuNPs, and Au-AgNPs in the presence of four triazole fungicides produced a fingerprint response pattern for each analyte.Innovative changes to the metal composition of nanoparticles leads to the production of entirely distinct response patterns that can be used for the detection and discrimination of triazoles. Pattern recognition methods, including linear discriminant analysis (LDA) and hierarchical cluster analysis, have been employed for the differentiation of triazoles in the concentration range of 0.1-0.55μgmL-1. Besides, the sensor array demonstrates promising practicability to satisfactorily distinguished triazole in mixtures and complex media of wheat flour and cucumber samples. The proposed colorimetric sensor array might pave the way towards a cost-effective and rapid, yet sensitive platform for high-throughput monitoring of residual amounts of pesticides for on-site applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have