Abstract

There are continuing efforts of developing faster FETs and diamond is one of the strong candidates as a base semiconductor. Since the upper-limit-frequency of diamond FETs determines saturated drift velocities of charge-carriers, we need to first characterize diamond to develop better FETs. It is, however, not easy to measure the velocities with response time of less than 20 ns. Therefore, we developed a drift velocity measurement system using a time-of-flight (TOF) technique with a UV laser with 100 ps pulse width. In order to realize response times faster than 20 ns, we employed a 50 Ω coaxial cable as a load, with which we could effectively reduce the stray capacitance and inductance, and also, suppress reflections in the signal which gives false signals. As a result, we can measure carrier-transit times shorter than 10 ns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.