Abstract
Succinic acid (SA), a four-carbon dicarboxylic acid utilized as a platform chemical for valuable industrial products, is a major fermentation product of Actinobacillus succinogenes cells, synthetized during anaerobic metabolism. In this study, cell-recycled continuous fermentation (CRCF) was carried out in order to maximize the appreciably stable biocatalytic activity of SA-producing cells and the growth-associated mode of SA biosynthesis. Stable and long operations of CRCF could be carried out through an efficient decanter system developed in our laboratory, which could effectively separate highly dense microbial cells from the outlet stream. This allowed to overcome the wash-out phenomenon encountered at relatively low dilution rates in conventional continuous fermentation systems without cell recycling. Through careful assessment of the effects of dilution rate, composition of feeding medium, and cell recycling ratio on SA yield via the CRCF process, volumetric SA productivity could be enhanced to 3.86 g/(L·h), an approximately 5.1-fold increase compared to parallel continuous fermentation without cell recycling. A higher dilution rate and a 24% increment in SA production via increased density of active cells inside the bioreactor of the CRCF system were the probable factors inducing such a considerable enhancement in volumetric SA productivity during CRCF. Since volumetric productivity is the most important parameter determining the cost-effectiveness of a given fermentation bioprocess, it is quite evident that CRCF is a promising alternative to conventional batch or continuous fermentation without cell recycling for mass production of SA.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have