Abstract

We developed new procedures for internal standardization and calibration to be used for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for elemental micro mapping imaging of biological samples like Western blot membranes and tissue sections. These procedures are based on printing of metal spiked inks onto the top of thin layer samples for simultaneous internal standardization and calibration of LA-ICP-MS. In the case of internal standardization the ink is spiked with indium as an internal standard and homogenously printed over the entire membrane (size 56 cm2) prior to LA-ICP-MS detection, a standard deviation (RSD) value of 2% was achieved. In the second approach the metal content of lanthanide tagged proteins and antibodies after biological work flows was quantified by LA-ICP-MS on nitro-cellulose membranes. In this case the inks spiked with varying metals were printed with different densities on the same nitrocellulose membranes in well-defined squares to produce matrix-matched calibration standards. For validation and calibration the ink squares were excised and the specific metal content was measured by liquid ICP-MS after solubilization of the membrane slice. For the printed calibration standard limits of detection (LOD) of <4 fmol for different metals and relative process standard deviations of 1–2% only were determined via LA-ICP-MS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.