Abstract

Mechanical stimulation plays a role in improving cell growth in the skeletal system. Many studies have reported the development of bioreactors to stimulate cell-seeded, three-dimensional scaffolds. In this study, we developed a bioreactor capable of applying controlled compression to a cell-seeded agarose hydrogel. This bioreactor consists of a circulation system and compression system. In the circulation system, the culture chamber was sealed to prevent contamination and a pump circulated the medium. In the compression system, mechanical stimuli were controlled by LabVIEW software and a mechanical transfer system. To compare the effects of mechanical stimulation on agarose hydrogel scaffolds, we cultured MC3T3-E1 cells statically and dynamically. The number of cells was increased by 43% at seven days under the intermittent condition than under the static conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.