Abstract
Proprioception plays an important role in joint stability, and ankle sprains usually happen involving plantarflexion, internal rotation, and inversion. However, ankle 3D movement proprioception has never been measured in weight-bearing. Accordingly, the active 3-dimensional movement extent discrimination apparatus (AMEDA-3D) was developed and its reliability and validity were investigated. A total of 58 subjects volunteered for this trial, with 12 subjects with chronic ankle instability (CAI) and 12 healthy controls in the test-retest reliability study. There were 17 subjects with CAI and 17 healthy controls in the validity study. An intraclass correlation coefficient (ICC) and Minimum Detectable Change at the 90% confidence interval (MDC90) were computed. AMEDA-3D scores were analysed by independent samples t-tests, and Youden's index was used to calculate the optimal AMEDA-3D cut-off for discriminating individuals with CAI. Pearson's correlation analysis was used to explore the relationship between AMEDA-3D scores and Y Balance Test (YBT), Time In Balance Test (TIB), and Cumberland Ankle Instability Tool (CAIT) scores. The main results were as follows: (1) The ICC(3,1) value of AMEDA-3D scores was 0.817 (95% CI=0.452-0.945) in CAI subjects. (2) The AMEDA-3D proprioceptive area under the curve score used to discriminate CAI subjects from healthy controls was 0.778, with a sensitivity of 94% and a specificity of 82%. (3) AMEDA-3D proprioceptive scores were moderately correlated with CAIT scores (r=0.58 and p<0.001), YBT (r=0.47 and p=0.005), and TIB (r=0.68 and p<0.001). Our findings suggest that the AMEDA-3D tool shows good reliability and validity for clinical assessment of proprioceptive deficits associated with CAI. Improved ankle 3D motor proprioception may positively impact subjects' balance control, self-rated symptoms, and function.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have