Abstract

An in-depth study of chemical processes at plastic-metal interfaces led to the development of a novel approach to the creation of lab-on-a-chip microflow reactors. The developed method combines 3D printing of the reactor core by fused deposition modeling using conventional plastic material (ABS), followed by chemical (electroless copper) and galvanic plating (nickel) of the resulting piece (in overall, 3D+G printing process). Detailed analysis of the pieces along all 3D+G stages by electron microscopy revealed step-by-step processes on the plastic-metal interface, which finally allowed innovative reactor design. Despite being made from low-cost materials in a simple procedure, flow reactors are characterized by chemical resistance, versatile geometry, modular design and excellent operating performance. Complete reactor assembly was formulated and successfully tested in a variety of chemical processes targeted on biologically active molecules, including homogeneous, heterogeneous and photochemical reactions. Reactor modules can be combined into cascades to perform sequential reactions. Metallized reactors can be used multiple times in a variety of chemical processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.