Abstract
The design, fabrication, and the characterization of a 0.5-V Josephson junction array device are presented for the quantum voltage standards in the National Institute of Metrology (NIM) of China. The device consists of four junction arrays, each of which has 1200 3-stacked Nb/NbxSi1−x/Nb junctions and an on-chip superconducting microwave circuit which is mainly a power divider enabling each Josephson array being loaded with an equal amount of microwave power. A direct current (dc) quantum voltage of about 0.5 V with a ∼1-mA current margin of the 1st quantum voltage step is obtained. To further prove the quality of NIM device, a comparison between the NIM device with the National Institute of Standards and Technology (NIST) programmable Josephson voltage standard (PJVS) system device is conducted. The difference of the reproduced 0.5-V quantum voltage between the two devices is about 0.55 nV, which indicates good agreement between the two devices. With the homemade device, we have realized a precise and applicable 0.5-V applicable-level quantum voltage.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have