Abstract

Anions and cations have a key role in our normal life. Cu2+ ion is a crucial trace element accountable for the part of several cellular enzymes and proteins, including cytochrome c oxidase, dopamine monooxygenase, Cu/Zn superoxide dismutase, and ceruloplasmin. WHO has found the extreme acceptable level of Cu2+ ions in drinking water is up to 2.0ppm. Excess use of Cu2+ ions is associated with various human genetic disorders. Thus, the visualization of Cu2+ ions to avoid its toxic effects in chemical and biological systems is significant. In this review we have summarized sensors based on catalytic hydrolysis of picolinate to detect Cu2+ ions. The sensors based on hydrolysis of picolinate are very selective as compared to the other sensors for Cu2+ ions detection. We have focused on describing the structure, spectral properties, detection limits, and bioimaging model of the sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.