Abstract

Despite decades of research, the complex processes of embryonic development are not fully understood. The study of mammalian development poses particular challenges such as low numbers of embryos, difficulties in culturing embryos in vitro, and the time to generate mutant lines. With new approaches we can now address questions that had to remain unanswered in the past. One big contribution to studying the molecular mechanisms of development are two- and three-dimensional in vitro model systems derived from pluripotent stem cells. These models, such as blastoids, gastruloids, and organoids, enable high-throughput screens and straightforward gene editing for functional testing without the need to generate mutant model organisms. Furthermore, their use reduces the number of animals needed for research and allows the study of human development. Here, we outline and discuss recent advances in such in vitro model systems to investigate pre-implantation and post-implantation development.

Highlights

  • Embryonic development describes the establishment of the body plan and all organs within an organism

  • We focus on models using pluripotent stem cells that recapitulate pre-implantation, peri-implantation, and post-implantation development of the whole embryo, as well as specific developmental trajectories toward parts of the embryo

  • Due to the high number with which blastoids can be generated, and the possibility for genetic manipulation, blastoids can serve as model systems to study lineage segregation, cellular mechanics, the process of implantation, and the effect of epigenetic abnormalities on early embryonic development

Read more

Summary

Introduction

Embryonic development describes the establishment of the body plan and all organs within an organism. In vitro Models of Development segregations will result in the formation of a spherical structure with a central lumen, called the blastocyst (mouse E3.5, human E5.0). In light of recent advances in the study of molecular mechanisms during embryonic development using in vitro model systems (Figure 1), we outline and discuss such cultures and their use in developmental biology research.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.