Abstract

As a ubiquitous movement in the ocean, tides are vital for marine life and numerous marine activities such as fishing and ocean engineering. Tidal dynamics are complicated in the East Asian marginal seas (EAMS) due to changing complex topography and coastlines related to human activities (e.g., land reclamation and channel deepening) and natural variability (e.g., seasonal variations of ocean stratification and river flow). As an important tool, numerical models are widely used because they can provide basin-scale patterns of tidal dynamics compared to point-based tide gauges. This paper aims to overview the development history of the numerical simulation of tides in the EAMS, including the Bohai Sea, the Yellow Sea, the East China Sea, the East/Japan Sea, and the South China Sea, provide comprehensive understanding of tidal dynamics, and address contemporary research challenges. The basic features of major tidal constituents obtained by tidal models are reviewed, and the progress in the inversion of spatially and temporally changing model parameters via the adjoint method are presented. We review numerical research on how a changing ocean environment induces tidal evolution and how tides and tidal mixing influence ocean environment in turn. The generation, propagation, and dissipation of internal tides in the EAMS are also reviewed. Although remarkable progresses in tidal dynamics have been made, nonstationary tidal variations are not fully explained yet, and further efforts are needed. In addition, tidal influences on ocean environment still receive limited attention, which deserves special attention.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call