Abstract

Background and aim The study was to extend systemic circulation and biological half-life (t1/2) of trans-resveratrol (RSV) using solid lipid nanoparticles (RSV-SLN) to improve its anti-cancer potential. Methods RSV-SLN was prepared by solvent emulsification evaporation technique and proceeded for evaluation like particle size, PDI, zeta potential, in vitro release, in vitro cytotoxicity, cellular internalisation, haemolysis and erythrocyte membrane integrity, platelet aggregation and pharmacokinetic studies in rats. Moreover, cancer cells accumulation of RSV-SLN also needs to be evaluated for proving their targeting ability. Result Prepared SLN showed 126.85 ± 12.09 nm particle size, −24.23 ± 3.27 mV Zeta potential and 74.67 ± 4.76%. release at 48 h and haemocompatible. The cellular internalisation image showed the SLN reach in a cytoplasm and nucleus of PC3 prostate cells. RSV-SLN exhibited high t1/2 (8.22 ± 1.36 h) and 7.19 ± 0.69 h MRT (Mean residence time) and lower clearance i.e. 286.42 ± 13.64 mL/min/kg. The bio-distribution of RSV-SLN was found to be extremely high in prostate cells and accumulate 7.56 times greater than that of RSV solution. Conclusion The developed RSV-SLN can be applied as potential carrier for delivery of drug of chemotherapeutics at an extend systemic circulation and targeting efficiency at tumour site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call