Abstract
Background/Objectives: The focus of this study was to prepare and characterize docetaxel (DCX)-loaded lipid/polymer hybrid nanoparticles (LPHNps) functionalized with the monoclonal antibody (mAb) Chi-Tn for a potential active targeting approach in lung cancer treatment. Methods: We synthesized DOTAP-PLGA hybrid nanoparticles loaded with DCX and functionalized them with Chi-Tn mAb through a biotin–avidin approach. The physicochemical characterization involved dynamic light scattering, transmission electron microscopy, Raman spectroscopy, and atomic force microscopy. The in vitro and in vivo evaluations encompassed uptake studies, cell viability tests, and the assessment of tumor growth control in a lung cancer model. Results: The nanoparticles featured a hydrophobic PLGA core with 99.9% DCX encapsulation efficiency, surrounded by a DOTAP lipid shell ensuring colloidal stability with a high positive surface charge. The incorporation of PEGylated lipids on their surface helps evade the immune system and facilitate Chi-Tn mAb attachment. The resulting nanoparticles exhibit a spherical shape with monodisperse particle sizes averaging 250 nm, and demonstrate sustained drug release. In vitro uptake studies and viability assays conducted in A549 cancer cells show that the Chi-Tn mAb enhances nanoparticle internalization and significantly reduces cell viability. In vivo studies demonstrate a notable reduction in tumor volume and an increased survival rate in the A549 tumor xenograft mice model when DCX was encapsulated in nanoparticles and targeted with Chi-Tn mAb in comparison to the free drug. Conclusions: Therefore, Chi-Tn-functionalized LPHNps hold promise as carriers for actively targeting DCX to Tn-expressing carcinomas.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have