Abstract

Acute lung injuries caused due to inhalation of toxic irritant gases such as ammonia, chlorine, hot smoke and burning plastic fumes predominantly affect the airways, causing tracheitis, bronchitis, and other inflammatory responses. The purpose was to develop and characterise nanoparticle based fluticasone propionate (FP) DPI formulation and assess its in vitro and in vivo pulmonary deposition using pharmacoscintigraphy. FP nanoparticles were prepared by nanoprecipitation method. Optimisation was carried out with the help of Box–Behnken statistical design. Nanoparticles were characterised with the help of SEM, FT-IR, DSC and XRD. Anderson cascade impaction showed that nano-FP exhibited significantly higher respirable fraction of 60.3 ± 2.41 as compared to 16.4 ± 0.66 for micronised form. Ventilation lung scintigraphy in human volunteers confirmed significant increase in drug delivery till alveolar region with nano-FP in comparison to micronised drug. Results indicate that the developed formulation may have a potential prophylactic/therapeutic role against toxic, irritant gas inhalation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.