Abstract

Infections significantly increase mortality in acute liver failure (ALF) patients, and there are no risk prediction models for early diagnosis and treatment of infections in ALF patients. This study aims to develop a risk prediction model for bacterial infections in ALF patients to guide rational antibiotic therapy. The data of ALF patients admitted to the Second Hospital of Hebei Medical University in China from January 2017 to January 2022 were retrospectively analyzed for training and internal validation. Patients were selected according to the updated 2011 American Association for the Study of Liver Diseases position paper on ALF. Serological indicators and model scores were collected within 24 h of admission. New models were developed using the multivariate logistic regression analysis. An optimal model was selected by receiver operating characteristic (ROC) analysis, Hosmer-Lemeshow test, the calibration curve, the Brier score, the bootstrap resampling, and the decision curve analysis. A nomogram was plotted to visualize the results. A total of 125 ALF patients were evaluated and 79 were included in the training set. The neutrophil-to-lymphocyte ratio and sequential organ failure assessment (SOFA) were integrated into the new model as independent predictive factors. The new SOFA-based model outperformed other models with an area under the ROC curve of 0.799 [95% confidence interval (CI): 0.652-0.926], the superior calibration and predictive performance in internal validation. High-risk individuals with a nomogram score ≥26 are recommended for antibiotic therapy. The new SOFA-based model demonstrates high accuracy and clinical utility in guiding antibiotic therapy in ALF patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.