Abstract

Statistical modeling of the corrosion inhibition process by twenty-one pyridazine derivatives for mild steel in acidic medium was investigated by the quantitative structure property relationship (QSPR) approach. This modeling was established by the correlation between the corrosion inhibition efficiency (IE %) and a number of the electronic and structural properties of these inhibitors such as: the EHOMO (highest occupied molecular orbital energy), the ELUMO (lowest unoccupied molecular orbital energy), the energy gap (EL-H), the dipole moment (μ), the hardness (η), the softness (σ), the absolute electronegativity (χ), the ionization potential (IP), the electron affinity (EA), the fraction of electrons transferred (ΔN), the electrophilicity index ω the molecular volume (Vm), the logarithm of the partition coefficient (Log P), and the molecular mass (M), in addition to the inhibitor concentration (Ci). The structure electronic properties was calculated by the use of the density functional theory method (DFT), at B3LYP/6-31G (d, p) level of theory and the analysis of dimensionality and redundancy as well as the test of collinearity between descriptors are carried out using principal component analysis (PCA). Whereas, the correlation between EI % and molecular structure is performed through the development of tree mathematical models, based-QSPR approaches: the partial least squares regression (PLS), the principal component regression (PCR) and the artificial neural networks (ANN). Indeed, the statistical quantitative results revealed that PCR and ANN were the most relevant and predictive models in comparison with the PLS model. This pertinence was demonstrated by using leave one-out cross-validation as an efficient method for testing the internal stability and predictive capability of said models with a high cross-validated determination coefficient R2cv= 0.92 and predicted determination coefficient R2pred= 0.92 and R2pred= 0.90 for PCR and ANN respectively; in addition to an extrapolation test set as an external validation with a significant external coefficient of determination: R2test= 0.94 and R2test= 0.92, for the two correspondingly models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.