Abstract
PurposeThis paper aims to investigate the corrosion inhibition efficiency of Landolphia heudelotii (LH) on mild steel in 1 M HCl and 0.5 M H2SO4 using weight loss and potentiodynamic polarization techniques.Design/methodology/approachWater extract of LH was used as corrosion inhibitor on mild steel in acidic media at room temperature and elevated temperatures (30-60°C). Various concentrations of the plant extract were prepared from the stock solution obtained after solvent extraction. The inhibition efficiency of LH extract was evaluated and mechanism of adsorption was deduced.FindingsLH extract showed significant corrosion inhibition on mild steel in both acidic media, with inhibition efficiency increasing with extract concentration. Potentiodynamic polarization measurements revealed mixed inhibition mechanism. Optimum inhibition efficiency was recorded at 2500 mg/L after 288 h. Mechanism of adsorption was mainly of physisorption. The inhibitor exhibited good inhibition efficiency even at elevated temperature.Research limitations/implicationsThis study provides new data on the anticorrosion characteristics of LH extract under the specified conditions. Further studies could expand the experimental variables and use advanced surface probe techniques.Practical implicationsThe developed inhibitor provides an alternative method of inhibiting corrosion on mild steel using eco-friendly materials from natural products which are less toxic, safer, cost-effective and readily available.Originality/valueThe method used was effective and the inhibitor developed can be incorporated in surface coatings where mild steel is used as construction materials, as tube sheets, rods and bars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.