Abstract

Study objectivePostoperative delirium is associated with morbidity and mortality, and its incidence varies widely. Using known predisposing and precipitating factors, we sought to develop postoperative delirium prediction models for noncardiac surgical patients. DesignRetrospective prediction model study. SettingMajor quaternary medical center. PatientsOur January 2016 to June 2020 training dataset included 51,677 patients of whom 2795 patients had delirium. Our July 2020 to January 2022 validation dataset included 14,438 patients of whom 912 patients had delirium. InterventionsNone. MeasurementsWe trained and validated two static prediction models and one dynamic delirium prediction model. For the static models, we used random survival forests and traditional Cox proportional hazard models to predict postoperative delirium from preoperative variables, or from a combination of preoperative and intraoperative variables. We also used landmark modeling to dynamically predict postoperative delirium using preoperative, intraoperative, and postoperative variables before onset of delirium. Main resultsIn the validation analyses, the static random forest model had a c-statistic of 0.81 (95% CI: 0.79, 0.82) and a Brier score of 0.04 with preoperative variables only, and a c-statistic of 0.86 (95% CI: 0.84, 0.87) and a Brier score of 0.04 when preoperative and intraoperative variables were combined. The corresponding Cox models had similar discrimination metrics with slightly better calibration. The dynamic model - using all available data, i.e., preoperative, intraoperative and postoperative data - had an overall c-index of 0.84 (95% CI: 0.83, 0.85). ConclusionsUsing preoperative and intraoperative variables, simple static models performed as well as a dynamic delirium prediction model that also included postoperative variables. Baseline predisposing factors thus appear to contribute far more to delirium after noncardiac surgery than intraoperative or postoperative variables. Improved postoperative data capture may help improve delirium prediction and should be evaluated in future studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.