Abstract
Lumbar herniated nucleus pulposus (HNP) is difficult to diagnose using lumbar radiography. HNP is typically diagnosed using magnetic resonance imaging (MRI). This study developed and validated an artificial intelligence model that predicts lumbar HNP using lumbar radiography. A total of 180,271 lumbar radiographs were obtained from 34,661 patients in the form of lumbar X-ray and MRI images, which were matched together and labeled accordingly. The data were divided into a training set (31,149 patients and 162,257 images) and a test set (3512 patients and 18,014 images). Training data were used for learning using the EfficientNet-B5 model and four-fold cross-validation. The area under the curve (AUC) of the receiver operating characteristic (ROC) for the prediction of lumbar HNP was 0.73. The AUC of the ROC for predicting lumbar HNP in L (lumbar) 1-2, L2-3, L3-4, L4-5, and L5-S (sacrum)1 levels were 0.68, 0.68, 0.63, 0.67, and 0.72, respectively. Finally, an HNP prediction model was developed, although it requires further improvements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.