Abstract

Many predictive models exist that predict risk of common cardiometabolic conditions. However, a vast majority of these models do not include genetic risk scores and do not distinguish between clinical risk requiring medical or pharmacological interventions and pre-clinical risk, where lifestyle interventions could be first-choice therapy. In this study, we developed, validated, and compared the performance of three decision rule algorithms including biomarkers, physical measurements, and genetic risk scores for incident coronary artery disease (CAD), diabetes (T2D), and hypertension against commonly used clinical risk scores in 60,782 UK Biobank participants. The rules models were tested for an association with incident CAD, T2D, and hypertension, and hazard ratios (with 95% confidence interval) were calculated from survival models. Model performance was assessed using the area under the receiver operating characteristic curve (AUROC), and Net Reclassification Index (NRI). The higher risk group in the decision rules model had a 40-, 40.9-, and 21.6-fold increased risk of CAD, T2D, and hypertension, respectively (p < 0.001 for all). Risk increased significantly between the three strata for all three conditions (p < 0.05). Based on genetic risk alone, we identified not only a high-risk group, but also a group at elevated risk for all health conditions. These decision rule models comprising blood biomarkers, physical measurements, and polygenic risk scores moderately improve commonly used clinical risk scores at identifying individuals likely to benefit from lifestyle intervention for three of the most common lifestyle-related chronic health conditions. Their utility as part of digital data or digital therapeutics platforms to support the implementation of lifestyle interventions in preventive and primary care should be further validated.

Highlights

  • Developed countries have seen a consistent rise in life expectancy and overall improving trends in chronic disease outcomes [1]

  • Longer life expectancy has been accompanied by an increase in the prevalence of common chronic diseases, such as coronary artery disease (CAD), type 2 diabetes (T2D), and hypertension, which pose a significant burden to societies and limit healthy life expectancy (HALE) both with regards to morbidity and mortality [2,3]

  • Summary statistics files from three large genome-wide association studies (GWAS) conducted in other cohorts were used to calculate Polygenic risk scores (PRS) for CAD, T2D, and hypertension [50,51,52]

Read more

Summary

Introduction

Developed countries have seen a consistent rise in life expectancy and overall improving trends in chronic disease outcomes [1]. This has translated to a global increase in life expectancy of over 20 years for both men and women [1]. Preventive strategies which allow for earlier lifestyle intervention are a solution to tackle the growing burden of lifestyle-related health conditions. Lifestyle interventions such as weight loss, limiting (saturated) fat intake, and 30 min of exercise per day are recommended across multiple guidelines to reduce cardiovascular disease risk and the progression from prediabetes to T2D [4,5]. Adherence and maintenance of health behavior change requires personalized lifestyle recommendations

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call