Abstract

Background: Insulin resistance is a common etiology of metabolic syndrome, but receiver operating characteristic (ROC) curve analysis shows a weak association in Koreans. Using a machine learning (ML) approach, we aimed to generate the best model for predicting insulin resistance in Korean adults aged > 40 of the Ansan/Ansung cohort using a machine learning (ML) approach. Methods: The demographic, anthropometric, biochemical, genetic, nutrient, and lifestyle variables of 8842 participants were included. The polygenetic risk scores (PRS) generated by a genome-wide association study were added to represent the genetic impact of insulin resistance. They were divided randomly into the training (n = 7037) and test (n = 1769) sets. Potentially important features were selected in the highest area under the curve (AUC) of the ROC curve from 99 features using seven different ML algorithms. The AUC target was ≥0.85 for the best prediction of insulin resistance with the lowest number of features. Results: The cutoff of insulin resistance defined with HOMA-IR was 2.31 using logistic regression before conducting ML. XGBoost and logistic regression algorithms generated the highest AUC (0.86) of the prediction models using 99 features, while the random forest algorithm generated a model with 0.82 AUC. These models showed high accuracy and k-fold values (>0.85). The prediction model containing 15 features had the highest AUC of the ROC curve in XGBoost and random forest algorithms. PRS was one of 15 features. The final prediction models for insulin resistance were generated with the same nine features in the XGBoost (AUC = 0.86), random forest (AUC = 0.84), and artificial neural network (AUC = 0.86) algorithms. The model included the fasting serum glucose, ALT, total bilirubin, HDL concentrations, waist circumference, body fat, pulse, season to enroll in the study, and gender. Conclusion: The liver function, regular pulse checking, and seasonal variation in addition to metabolic syndrome components should be considered to predict insulin resistance in Koreans aged over 40 years.

Highlights

  • Insulin acts by binding to the insulin receptors to activate the insulin-receptor substrates (IRS) via phosphorylation in various tissues [1,2]

  • This study provided crucial risk factors for insulin resistance in Asians

  • The results suggested that metabolic syndrome (MetS) did not predict the homeostasis model assessment of insulin resistance (HOMA-IR) risk

Read more

Summary

Introduction

Insulin acts by binding to the insulin receptors to activate the insulin-receptor substrates (IRS) via phosphorylation in various tissues [1,2]. The polygenetic risk scores (PRS) generated by a genome-wide association study were added to represent the genetic impact of insulin resistance. They were divided randomly into the training (n = 7037) and test (n = 1769) sets. XGBoost and logistic regression algorithms generated the highest AUC (0.86) of the prediction models using 99 features, while the random forest algorithm generated a model with 0.82 AUC. These models showed high accuracy and k-fold values (>0.85). The prediction model containing 15 features had the highest AUC of the ROC curve in XGBoost and random forest algorithms. Conclusion: The liver function, regular pulse checking, and seasonal variation in addition to metabolic syndrome components should be considered to predict insulin resistance in Koreans aged over 40 years

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call