Abstract

Gut-derived uremic toxins contribute to the uremic syndrome and are gaining attention as potentially modifiable cardiovascular disease risk factors in patients with underlying chronic kidney disease. A simple, rapid, robust, accurate and precise ultra-performance liquid chromatography–tandem mass spectrometry method was developed and validated for the simultaneous determination of a panel of four gut-derived uremic toxins in human serum. The panel was comprised of kynurenic acid, hippuric acid, indoxyl sulfate, and p-cresol sulfate. Serum samples were protein precipitated with acetonitrile containing deuterated internal standards. Chromatographic separation of analytes was accomplished with an Acquity BEH C18 (2.1 × 100 mm, 1.7 μm) column by isocratic elution at a flow rate of 0.3 mL/min with a mobile phase composed of solvent A (10 mM ammonium formate; pH 4.3) and solvent B (acetonitrile) (85:15, v/v). Analytes were detected using heated electrospray ionization and selected reaction monitoring. The total run-time was 4 min. Standard curves were linear and correlation coefficients (r) were ≥0.997 for concentration ranges of 0.01-0.5 μg/mL for kynurenic acid, 0.25–80 μg/mL for p-cresol sulfate, and 0.2–80 μg/mL for hippuric acid and indoxyl sulfate. Intra- and inter-day accuracy and precision were within 19.3% for the LLOQs and ≤10.9% for all other quality controls. Matrix effect from serum was <15% and recovery was ≥81.3% for all analytes. The method utilizes a short run-time, simple/inexpensive sample processing, has passed FDA validation recommendations, and was successfully applied to study patients with kidney disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call