Abstract
The current studies entail systematic quality by design (QbD)-based development of a simple, rapid, sensitive and cost-effective stability-indicating method for the estimation of olmesartan medoxomil. Quality target method profile was defined and critical analytical attributes (CAAs) for the reverse-phase liquid chromatography method earmarked. Chromatographic separation accomplished on a C18 column using acetonitrile and water (containing 0.1% orthophosphoric acid, pH 3.5) in 40 : 60 (v/v) as mobile phase at a flow rate of 1.0 mL/min with UV detection at 243 nm. Risk assessment studies and screening studies facilitated comprehensive understanding of the factors affecting CAAs. The mobile phase ratio and flow rate were identified as critical method parameters (CMPs) and were systematically optimized using face-centered cubic design, evaluating for CAAs, namely peak area, retention time, theoretical plates and peak tailing. Statistical modelization was accomplished followed by response surface analysis for comprehending plausible interaction(s) among CMPs. Search for optimum solution was conducted through numerical and graphical optimization for demarcating the design space. Analytical method validation and subsequent forced degradation studies corroborated the method to be highly efficient for routine analysis of drug and its degradation products. The studies successfully demonstrate the utility of QbD approach for developing the highly sensitive liquid chromatographic method with enhanced method performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.