Abstract

A new ultra-high-performance liquid chromatography method was developed using quality-by-design principles for quantifying trace-level impurities of ibrutinib. The method utilized an ACQUITY UPLC BEH C18 column with a mobile phase consisting of equal parts of 0.02 M formic acid in water and 0.02 M formic acid in acetonitrile. The critical method parameters, including mobile phase pH, column temperature, and flow rate, were optimized using the design of experiments. Statistical analysis revealed the impact of these parameters on critical quality attributes. Perturbation and response surface plots illustrated the individual and interactive effects of the parameters. The optimal parameter levels were determined to be pH,2.5; column temperature, 28°C; and flow rate, 0.55 mL/min. Confirmation experiments demonstrated the method's robustness, with the separation of impurities and unknown degradation products within a 5-min runtime. The optimized ultra-performance liquid chromatography method was validated according to ICH guidelines. The method exhibited linear response within the range of 0.025-100 μg/mL for ibrutinib and 0.0187-0.225 μg/mL for impurities (r2 > 0.9995), with limits of detection/limits of quantification of 0.01/0.025 and 0.015/0.0187 for ibrutinib and four impurities, respectively. Recoveries for the drug and impurities ranged from 92.69 to 102.7%, and precision was below 2% and 8% relative standard deviation for ibrutinib and impurities, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.