Abstract

The objective of the current study was the development of a simple, rapid, and accurate isocratic reverse-phase ultra-performance liquid chromatographic (RP-UPLC) method for the routine control analysis of imipramine hydrochloride (IMH) in bulk drug and in pharmaceutical formulations. This work was carried out in order to reduce analysis time and maintaining good efficiency which in turn is focused on high-speed chromatographic separations. The method was developed using Waters Acquity BEH C18 column (100 mm × 2.1 mm, 1.7 μm) with mobile phase consisting of a mixture of acetonitrile and ammonium acetate buffer of pH-5 (80 : 20, v/v/v). UV detection was performed at 220 nm for eluted compound. An excellent linearity was observed in the concentration range 0.2–3 µg/mL IMH with a regression coefficient () value of 0.9999. The method developed was validated and forced degradation was performed as per ICH guidelines. The limit of detection () was 0.2532 ng/mL and the limit of quantitation () was found to be 0.7672 ng/mL. The drug IMH was subjected to hydrolytic, acidic, basic, thermal, photolytic, and oxidative stress conditions according to ICH regulations. IMH was found to be stable in basic, thermal, and photolytic conditions and degrades in acidic, hydrolytic, and oxidative stress conditions.

Highlights

  • Imipramine hydrochloride (IMH) is a tricyclic antidepressant

  • About 13.13% degradation was observed under oxidative stress conditions (5% H2O2), while degradation was not observed in IMH samples under stress conditions like neutral and photolytic stress conditions

  • IMH was found to be more stable under neutral, photolytic, and thermal (80∘C for 24 h) solid state conditions

Read more

Summary

Introduction

Imipramine hydrochloride (IMH) is a tricyclic antidepressant. It is a dibenzazepine derivative and chemically IMH is 3-(10,11-Dihydro-5H-dibenz[b,f]azepin-5-yl) propyldimethylamine hydrochloride (Figure 1). Several analytical methods have been reported for the determination of IMH in biological fluids and/or pharmaceutical formulations. These include chromatographic techniques like HPLC [3,4,5,6,7,8,9], TLC [10], GC [11,12,13,14], LC with direct injection and electrochemical detection [15], adsorptive stripping voltammetry [16], chemometric methods [17], flow-injection extraction spectrophotometry [18], derivative spectrophotometry [19, 20], and visible spectrophotometry [20,21,22,23,24]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call