Abstract
This research aimed to develop a new method for simultaneously estimating the presence of azithromycin (AZT) and rifampicin (RIF) in a capsule formulation using reverse-phase high-performance liquid chromatography. The developed method utilized a Gemini column with a 60:40% v/v acetonitrile and potassium dihydrogen phosphate mobile phase, a flow rate of 1mL/min, and an injection volume of 20μL. The detection wavelengths of 210 and 254nm for AZT and RIF, respectively, were used. Validation ensures specificity with a peak purity index > 0.99999 for AZT and >0.99995 for RIF, affirming unambiguous analyte detection. The system suitability test, within acceptable limits, validates method reliability. Linearity calibration curves (R2 = 0.998) cover a 25-150% target concentration range. Accuracy studies employing the standard addition method yield recovery values between 96.6 and 103.9% for both drugs, confirming method accuracy. Precision studies reveal % relative standard deviation values consistently below 2%, highlighting reproducibility. Robustness testing supports method reliability under varying conditions. Application to a pharmaceutical capsule formulation demonstrates the method's practicality, accurately quantifying AZT (98.30%) and RIF (99.37%). This study provides a validated analytical approach for simultaneous quantification in commercial pharmaceutical products containing both drugs, enhancing pharmaceutical quality control for critical antibiotics in complex formulations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have