Abstract

The geometric component of the point spread function (PSF) of a gamma camera collimator can be determined analytically, and the penetration component can be calculated readily by numerical ray-tracing. A Monte Carlo simulation of photon transport which includes collimator scatter is developed. The simulation was implemented with an array processor which propagates up to 1024 photons in parallel, allowing accurate estimates of the total radial PSF in less than a day. The simulation was tested by imaging monoenergetic point sources of Tc-99m, Cr-51, and Sr-85 (140, 320, and 514 keV, respectively) on a General Electric Star Cam with low-energy, general-purpose, and medium-energy collimators. Comparisons of measured and simulated PSFs demonstrate the validity of the model and the significance of collimator scatter in the degradation of image quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.