Abstract
BackgroundHeart failure with preserved ejection fraction (HFpEF) is associated with elevated rates of readmission and mortality. Accurate prediction of readmission risk is essential for optimizing healthcare resources and enhancing patient outcomes. MethodsWe conducted a retrospective cohort study utilizing HFpEF patient data from two institutions: the First Affiliated Hospital Zhejiang University School of Medicine for model development and internal validation, and the Affiliated Hospital of Xuzhou Medical University for external validation. A machine learning (ML) model was developed and validated using 53 variables to predict the risk of readmission within one year. The model’s performance was assessed using several metrics, including the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, F1 score, model training time, model prediction time and brier score. SHAP (SHapley Additive exPlanations) analysis was employed to enhance model interpretability, and a dynamic nomogram was constructed to visualize the predictive model. ResultsAmong the 766 HFpEF patients included in the study, 203 (26.5%) were readmitted within one year. The LightGBM model exhibited the highest predictive performance, with an AUC of 0.88 (95% confidence interval (CI):0.84–0.91), an accuracy of 0.79, a sensitivity of 0.81, and a specificity of 0.78. Key predictors included the E/e’ ratio, NYHA classification, LVEF, age, BNP levels, MLR, history of atrial fibrillation (AF), use of ACEI/ARB/ARNI, and history of myocardial infarction (MI). External validation also demonstrated strong predictive performance, with an AUC of 0.87 (95%CI:0.83–0.91). ConclusionsThe LightGBM model exhibited robust performance in predicting one-year readmission risk among HFpEF patients, providing a valuable tool for clinicians to identify high-risk individuals and implement timely interventions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.