Abstract
Heart failure patients with preserved ejection fraction (HFpEF) are at increased risk of future hospitalization. Contrast agents are often contra-indicated in HFpEF patients due to the high prevalence of concomitant kidney disease. Therefore, the prognostic value of a noncontrast cardiac magnetic resonance imaging (MRI) for HF-hospitalization is important. To develop and test an explainable machine learning (ML) model to investigate incremental value of noncontrast cardiac MRI for predicting HF-hospitalization. Retrospective. A total of 203 HFpEF patients (mean, 64 ± 12 years, 48% women) referred for cardiac MRI were randomly split into training validation (143 patients, ~70%) and test sets (60 patients, ~30%). A 1.5 T, balanced steady-state free precession (bSSFP) sequence. Two ML models were built based on the tree boosting technique and the eXtreme Gradient Boosting model (XGBoost): 1) basic clinical ML model using clinical and echocardiographic data and 2) cardiac MRI-based ML model that included noncontrast cardiac MRI markers in addition to the basic model. The primary end point was defined as HF-hospitalization. ML tool was used for advanced statistics, and the Elastic Net method for feature selection. Area under the receiver operating characteristic (ROC) curve (AUC) was compared between models using DeLong's test. To gain insight into the ML model, the SHapley Additive exPlanations (SHAP) method was leveraged. A P-value <0.05 was considered statistically significant. During follow-up (mean, 50 ± 39 months), 85 patients (42%) reached the end point. The cardiac MRI-based ML model using the XGBoost algorithm provided a significantly superior prediction of HF-hospitalization (AUC: 0.81) compared to the basic model (AUC: 0.64). The SHAP analysis revealed left atrium (LA) and right atrium (RV) strains as top imaging markers contributing to its performance with cutoff values of 17.5% and -15%, respectively. Using an ML model, RV and LA strains measured in noncontrast cardiac MRI provide incremental value in predicting future hospitalization in HFpEF. 3 TECHNICAL EFFICACY: Stage 2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.