Abstract

Biomonitoring of marine life has been enhanced in recent years by the integration of innovative DNA-based approaches, which offer advantages over more laborious techniques (e.g. microscopy). However, trade-offs between throughput, sensitivity and quantitative measurements must be made when choosing between the prevailing molecular methodologies (i.e. metabarcoding or qPCR/dPCR). Thus, the aim of the present study was to demonstrate the utility of a microfluidic-enabled high-throughput quantitative PCR platform (HTqPCR) for the rapid and cost-effective development and validation of a DNA-based multi-species biomonitoring toolkit, using larvae of 23 commercially targeted bivalve and crustacean species as a case study. The workflow was divided into three main phases: definition of (off-) target taxa and establishment of reference databases (PHASE 1); selection/development and assessment of molecular assays (PHASE 2); and protocol optimization and field validation (PHASE 3). 42 assays were eventually chosen and validated. Genetic signal not only showed good correlation with direct visual counts by microscopy but also showed the ability to provide quantitative data at the highest taxonomic resolution (species level) in a time- and cost-effective fashion. This study developed a biomonitoring toolkit, demonstrating the considerable advantages of this state-of-the-art technology in boosting the developmental testing and application of panels of molecular assays for the monitoring and management of natural resources. Once developed, this approach provides a cost and time-effective alternative compared to other multi-species approaches (e.g. metabarcoding). In addition, it is transferable to a wide range of species and will aid future monitoring programmes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.