Abstract

Shape-variable structures can change their geometry in a targeted way and thus adapt their outer shape to different operating conditions. The potential applications in aviation are manifold and far-reaching. The substitution of conventional flaps in high-lift systems or even the deformation of entire wing profiles is conceivable. All morphing approaches have to deal with the same challenge: A conflict between minimizing actuating forces on the one hand, and maximizing structural deflections and resistance to external forces on the other. A promising concept of shape variability to face this challenging conflict is found in biology. Pressure-actuated cellular structures (PACS) are based on the movement of nastic plants. Firstly, a brief review of the holistic design approach of PACS is presented. The aim of the following study is to investigate manufacturing possibilities for woven flexure hinges in closed cellular structures. Weaving trials are first performed on the material level and finally on a five-cell PACS cantilever. The overall feasibility of woven fiber reinforced plastics (FRP)-PACS is proven. However, the results show that the materials selection in the weaving process substantially influences the mechanical behavior of flexure hinges. Thus, the optimization of manufacturing parameters is a key factor for the realization of woven FRP-PACS.

Highlights

  • The aerodynamic performance of a conventional aircraft is optimized for one specific flight condition

  • All test data are presented with standard error at a confidence interval (CI) of 95%

  • The actuation principle based on internal pressure resolves the challenging conflict between high deformability and sufficient load capacity

Read more

Summary

Introduction

The aerodynamic performance of a conventional aircraft is optimized for one specific flight condition. Shape-variable structures can change their geometry in a targeted way and adapt their outer shape to different boundary conditions. Classical kinematic concepts can be improved through a controlled change of shape and the thereby changing interaction between the structure and its environment, and completely new functionalities can be explored. Many studies are found in the literature that describe the advantages of morphing wings. A review presented by Thill et al [2] summarizes the advantages of such morphing technologies as: reduction in drag and noise due to gap-free high lift systems, reduction in mass and cost by decreasing the overall system complexity, expanding range and flight envelope, stealth capability, and improved behavior regarding vibration and flutter.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call